55 research outputs found

    Intuitive Hand Teleoperation by Novice Operators Using a Continuous Teleoperation Subspace

    Full text link
    Human-in-the-loop manipulation is useful in when autonomous grasping is not able to deal sufficiently well with corner cases or cannot operate fast enough. Using the teleoperator's hand as an input device can provide an intuitive control method but requires mapping between pose spaces which may not be similar. We propose a low-dimensional and continuous teleoperation subspace which can be used as an intermediary for mapping between different hand pose spaces. We present an algorithm to project between pose space and teleoperation subspace. We use a non-anthropomorphic robot to experimentally prove that it is possible for teleoperation subspaces to effectively and intuitively enable teleoperation. In experiments, novice users completed pick and place tasks significantly faster using teleoperation subspace mapping than they did using state of the art teleoperation methods.Comment: ICRA 2018, 7 pages, 7 figures, 2 table

    Data-driven optimization for underactuated robotic hands

    Get PDF
    Passively adaptive and underactuated robotic hands have shown the potential to achieve reliable grasping in unstructured environments without expensive mechanisms or sensors. Instead of complex run-time algorithms, such hands use design-time analysis to improve performance for a wide range of tasks. Along these directions, we present an optimization framework for underactuated compliant hands. Our approach uses a pre-defined set of grasps in a quasistatic equilibrium formulation to compute the actuation mechanism design parameters that provide optimal performance. We apply our method to a class of tendon-actuated hands; for the simplified design of a two-fingered gripper, we show how a global optimum for the design optimization problem can be computed. We have implemented the results of this analysis in the construction of a gripper prototype, capable of a wide range of grasping tasks over a variety of objects
    • …
    corecore